Reasoning about Equations and Tape Diagrams (Part 1)

Finding Solutions

5 min

Problem

Here is a diagram and its corresponding equation. Find the solution to the equation and explain your reasoning.

Tape diagram, 4 small parts each labeled x, 1 large part labeled 17, total 23.


4x+17=234x+17=23

Answer

x=112x=1\frac12. Sample explanation: The diagram and equation show that 4 groups plus 17 more equals a total of 23. If we take aways the 17 more, we have 4 groups that equal a total of 6, and 64=112.\frac64=1\frac12.

Sample Response

x=112x=1\frac12. Sample explanation: The diagram and equation show that 4 groups plus 17 more equals a total of 23. If we take aways the 17 more, we have 4 groups that equal a total of 6, and 64=112.\frac64=1\frac12.

Responding to Student Thinking
More Chancesmore_chances

Response: Students will have more opportunities to understand the mathematical ideas addressed here. There is no need to slow down or add additional work to the next lessons.

Standards
Addressing
  • 7.EE.3·Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. <em>For example: If a woman making $25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or $2.50, for a new salary of $27.50. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.</em>
  • 7.EE.4.a·Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. <em>For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?</em>
  • 7.EE.B.3·Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.
  • 7.EE.B.4.a·Solve word problems leading to equations of the form <span class="math">\(px + q = r\)</span> and <span class="math">\(p(x + q) = r\)</span>, where <span class="math">\(p\)</span>, <span class="math">\(q\)</span>, and <span class="math">\(r\)</span> are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. <span>For example, the perimeter of a rectangle is <span class="math">\(54\)</span> cm. Its length is <span class="math">\(6\)</span> cm. What is its width?</span>